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ABSTRACT

A ~ifurcat lon theorem is proved for odd potential operators . The

operator equation (*) f ’(u) Lu + H(u) = Ku is treated where K C IR

and u E , a real Hu bert space . A sharp description is given of the

structure of the set of solutions of (*) near a bifurcation point as a

function of x .  A crucial role is played here by a notion of topological

index alternative to other indices used In critical point theory and the

properties of this index are developed in some detail .~~~~~~~~~
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BIFURCATION FOR ODD POTENTIAL OPERATO RS AND AN

ALTERNATIVE IOPOLOGICAL INDEX

*Edw ard R. Fadell and Paul H. Rabinowltz

§ I .  Introduction

In several recent papers [1-5), bifurcation theorems have been

proved for potential operators . The purpose of this study is to prove a

sharper result of this n ture for odd potential operators . In doing so we

will employ a topological index alternative to the notions of genus ,

Lj usternik- Schnirelman category, etc., which may also be of use in

other problems.

To describe our work more fully , let E be a real Hu bert space and

Q a neighborhood of 0 in E. Suppose f is a twice continuously

Frechet differentiable real valued map on ~?, I .e .  I C2(Q , R) with

1(0) = 0. Some standard remarks are In order . The Frechet derivative

of f at u € ci , f ’(u) ,  is a linedr map from E to IR so f ’(u) ~

the dual space of E. Since E is self dual we can and will interpret

the map u -. f ’(u)  as a map from E to E. We further assume

f ’(u) = Lu + H(u) where L is linear and H(u) o( Ilu Il) at u 0.

*This research was sponsored in pdrt by the Office of Naval Research under
Contract No. N000 14-76-C-0300, by the U. S. Arm y under Contract No.
DAAG29-7 5-C-0024 , and in part by the National Science Foundation under
Grant No. NSF MCS76—0637 3. Any reproduction In part or in fuU for the
purposes of the U. S. government is permitted .

~~~~~~~~~~~~~ 
_~~~~ u1-~ :-~ -



For K t IR , consider the equation

(1. 1) f ’(u)  = Ku

A solution of (1.1) is a pair (K , u) ~ IR X E. Our above assumptions

imply {(x ,O ) I x  IR) are solutions o f ( 1 . l )  and they shall be referred

to as the trivial solutions of ( 1. 1). A trivial solution (p ~, 0) i s called

a bifurcation point if every neighborhood of (
~, 0) contains nontrivial

solutions. It is well-known and easily shown that a necessary condition

for (i~, 
0) to be d bifurcation point is that ~ a(L) , the spectrum of

L. Under mild additional hypotheses , this necessary condition is also

sufficient . (See e .g .  [ s ]  for references).

In some applications , e. g. to buckling problems in elasticity theory,

solutions of (1. 1) represent the possible equilibrium states of a physical

system depending on a parameter K. It is there fore of interest to study

the solution set of (1.1) as a function of K .  Moreover in such problems

it is often the case that f is even and therefore solutions of (1 .1) occur

in pairs (x , ~ u) .  Our goal here is to give lower bounds for the number

of nontr ivial solutions of (1.1) near a bifurcation point as a function of

K when f is even. Our main result is:

Theorem 1. Z: Let £ be a real Hu bert space , 1� a neighborhood of 0

In E, and f ~ C2
(5~, J~) where I Is even dnd f ’(u) = Lu + 14( u)

with L linear and H(u) = o( Hull ) at u = 0. Suppose p. c a(L)

is an isoldted eigenvalue of L of multiplicity n < ~~~~~. Then either (I ) (p ., 0)
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is not an isolated solution of (1.1) in {p .) x E or ( i i )  there exist left

and right neighborhoods , J~ and ~9 , of p. in m and integers k , m > 0

such thdt k + m ~ n and if K 
~ 

J~ (resp. .9 ), (1.1) possesses at

led st k (~~ sp. m) iistinct pdirs of nontrividl solutions. Moreover

as K • p., the se solutions converge to (p ., 0).

Remark 1. 3: Either .9, or 
~r may be empty. A chardcterization of k

and m will be given in the course of the proof of the theorem.

Theorem 1.2 improves earlier results in this direction due to

Clark [ 3] and Rabinowitz [ 5] .  Other work on (1. 1) for f even has been

carried out b y Bohme [1] and Marlno [2 ]  who studied the solutions of (1.1)

near (p ., 0) as a function of p = i l u II . They showed in particular that

under the hypotheses of Theorem 1. z , for each p > 0, there are at

least n di stinct pairs of solutions (K (p ) .  ~t u( p)) of ( 1.1) having

llu( p) lI p and ( X ( p ) , u(p))  -
~~ (p ., 0) as p - .0 .  Thus Theorem 1.2 is a

natural complement to the B~hme-Marino result. We suspect that there

is a better approach to (1.1 ) by means of which both Theorem 1.2 ~nd the

p dependent result may be obtained simultaneously.

The proof of Theorem 1. 2 will be given in § 2. In brief the main

steps are : (1) Use a standard argument to reduce the problem of solving

(1.1) nedr (p ., 0) to that of determining the critical points (with respect

to v) of a function g(K , v) defined near (p ., 0) in R x IRA ;

n(2) Work in an appropriately defined neighborhood, Q, of 0 in D~

to construct several famil ies  0) sets 1’ in Q and study their properties;
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(3) Min imax g(K , v) over each of these families of sets thereby produc-

ing a set of numbers; (4) Verify that each of these minimax values is a

critical value Ct g(X , .)  and that we Obtdifl the required number of

critica l points.

To define the sets in (2) ,  a notton of topological index is introduced

which plays a crucial role there and Is of Independent Interest. To avoid

unduly interrupting the proo f of Theorem 1. 2 in § 2 , we stdte a lemmd in

§ 2 which dssert s the existence of an index with the properties we require

and delay the de finition of the Index and deve lopment of Its prop~~ties

to § 3. The relationship of this index to others that have been employe d

earlier in critical point theory such as Lju sternik-Schnire lmari category

[ 6],  com dex [ 7 ] ,  genus [8]  [9 ] ,  and the indices of Yang [10-11] will

also be discussed in § 3.

The authors acknowledge with thanks several helpful conversations

with Charles Coriley. In particular we are indepted to him for a sugges-

tion which led to the final fo rm of Theorem 3.14.

-4-



§2.  The Main Theorem

In this section we will carry out the proof of Theorem 1. 2. To

begin , observe that although E may be infinite dimensional , we can

reduce (1. 1) to a finite dimensional problem in a standard fashion using

the metho d of Lyapunov-Schmidt. This has been done already e. g. In

[5 )  but since it is brief we will include it here . Let N ~~ N(L - p.1),

the null spdce of L - p.I and let N 1 denote its orthogonal complement

in E. Since N is n dimensional , we c~ n identify it with IR~ .

If u E E , u = v + w with v E N and w E N1. Letting P and P1

denote respectively the orthogonal projectors of E onto N and N 1,

we see (1.1) is equivalent to the pair of equations:

( ( I)  (p . - K )v + P H ( v ± w )  = 0
(2.1)

(ii) (L — KI)w + P114(v + w) F(K , v , w) = 0

Note that F( p., 0, 0) = 0 and the Frechet derivative of F with respect

to w at (p ., 0 , 0), F
~~(p ,  0 , 0) L - p.I which is an isomorphism from

N 1 to N 1. Consequently by the implicit function theorem , (2.1) (ii) can

be solved for w = q~(K , v) in a neighborhood , ~~, of (p ., 0) IR X N

with q’ t C1(~ , N1). Since f Is even in a , it follows that ,‘(x, v)

Is odd in v. Moreover since 14(u) = o( Ilu II) at u 0 , (2 .1)  (Ii) shows

ç(X , v) = -(L - K I) 1P~~H(v + q’(X , v)) = o( f f v l l ) at V = 0 unIformly for 
~

near p. (where the Inverse is relative to N ’). Thus solving (1. 1) for

(K , u) near (p ., 0) in R X E is equivalent to so1viri~ (2 .1)  ( 1) for (K , v)

nea r ( p . , 0) ln I R X N .

—5—
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The next step In the proof is to define

( 2 . 2 )  g(X , v) = f(v +~~(x , v) )  - 

~~( Hv i i 2 
+ ll~(K ,v)~

2 
.

Note that g is even in v since f is even and ~ is odd in v. A

simple computation shows that for fixed K , critical points of g are

solutions of (2.1) ( i ) .  Thus to prove Theorem 1. 2, it suffices to determine

lower bounds for the number of critical points of g(K ,~~) near v 0

for K fixed near p .

From ( 2 .2 ) ,

(2. 3) ~~ (K , ’1) = (p. 
- K)v + PH(v + q~(X , v))

The right hand side of (2 .  3) is continuously differentiable. Hence

g(K , v) is a C2 function of v near v = 0 even though c(K , v) and

f ( v  + ~(X , v)) ~re only continuously differentiable in v. Consider the

ordinary diffe rential equation:

= -g (p .,~~)
( 2 . 4 ) V

4i(0, x) = x

for x near 0 in N. If v = 0 Is not an isolated critical point of

g(p ., v) , then we obtain (i) of Theorem 1. 2. Thus now and henceforth

we can assume there is a neighborhood , V, of 0 in N such that 0

is the unique critical point of g(p ., v) in V.

Lemma ~~5: There is a constant c >  0 and a symmetric open neighborhood

Q of 0, Q C V such that Q is compact and

— 6-
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If x E Q~ lg( p.,x )J < C .

02 If x t Q, then 4 (t , x) ~ 0 for all t satisfying

lg(p.,~,(t ,x ) ) l < c .

3~ If x ~ aQ, jg (p, x) I = c or 4i( t , x) ~ aQ for all t such

that jg (p .,  ~(t , x)) I ~ c.

PrcQ: The proo f of Lemma 2. 5 can be found in [ 5] .  Q is simpl y the

union of all orbit segments $i( t , x) , for x appropriately chosen near 0 ,

which lie in g(p ., ) l (-c , c) for c - ‘ifficientl y small .

Remark 2 .6 :  For future reference observe that if x c  Q, the orbit ~(t , x)

can only leave 0 by crossing g(p ., . ) 1(-c). Note also that

{x Q I g(p ., x) = c) may be empty. This occurs when g(p ., • )  has an

isolated local maximum at v = 0. Similarly {x c Q J g(p ., x) = -c)

may be empty.

Given the existence of 0, we obtain a standard sort of “deforma-

tion theorem ”. For z c IR, let A~ 
~ 

= {x c Q g(x , x) ~ z } and

{x c A
~ 

I g ~> ,~~ z, g~,(X ,x) = 0) .

Lemma 2. 7: If z. P > 0, and U is any neighborhood of

then there exists an c c (0 , 
~~ 

and an i~ c([ 0, 1] x Q, Q) such that:

10 ri(t , v) Is odd in v.

2° i(t , v) = v if v ~ g(x , . )~~~[ z - c~, z + e~J .

3
0 1(t ,v) ~s a homeomorphism of Q to i(t, Q) for each t c fo , 1].

4
0 1(l~

A x, +e \U ) C  
~~~~~~~

5° If ~~“ 
ii(l, \, ~~~~~ 

C A~~, ~~~~

—7—
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Proof: This lemma is the same as Lemma 1. 19 In [ 5 ] .  It is In the proof

of thi s lemma that the special features of Q play a role .

Next we reqLire a suitable notion of index. We identify ~ with

and set 3 (e) = ~n j - < ~~}. Let e denote the s~ t of —

compa t suL. 3ts 0 which a -r~ symmetric with respect to the

origin . IN will  denote the non-negative int.. gers.

Lemma 2.8: There exists an index theory, i .e .  a mappi ng ~ IN,

A -. Index A, possessing the following properties:

1° If A = ~~~, Index A = 0; if A � ~, Index A ~ 1; If A = {x, -x) ,

Index A = 1.

2° If A, B ~ and there is an odd map 4 1  C(A, B) , then

Index A < Index B. If 4’ is also a homeomorphism of A onto

B, then Index A = Index B.

3° Index (A U B) < Index A + Index B.

4
0 If A c e, there exists a 6 > 0 and a uniform neighborhood

of A, N 5(A) = {x e IRn 
l ix  - A l ~~. 6)  such that

Index ?416(A) Index A.

5
0 H U is a symmetric bounded open neighborhood of 0 in

mn Index 3U = n.

60 Let ~, > O , K c ~~ with K f l B ( O ) =~~ . Let T > 0  and suppose

O : K X f 0 , r J  i~~\ {o) Is an imbedding (i .e . ,  0 is a one-one

mapping ) such that O(x , 0) = x, x c  K and 0 ( , t) is odd

on K for each t . Then, if 0(K X {T}) C B (O),

—8-
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Index(O (K X [ 0 , T ] )  fl ~B (0)) = Index K
p

We remark that it is the need for an index theory satislying 60

that requires us to go beyond the usual Indices used in critical point

theory , in particul ar , genus or Lj usternik-Schire lman category. We

leave the precise defini t ion of Index and the verification of its basic

propert ies unti l § 3 and proceed now to complete the proof of Theorem 1. 2

making use of Lemma 2 .8.

Let S~ = {x V\ {0 ) I 4 ’( x, t ) c  V for all t >  o) and

S = {x v\ {o} l4 ’(x, t) C V for all t < o}. It is not difficult  to see

that either S~ or S is nonernpty [ 5] .  In fact both are nonempty

unless v = 0 is an isolated local maximum or minimum for g(p ., • ) .  Let
+ +T = S fl aQ and T = S fl aQ. The proof of Theorem 1. 2 Is now a

consequence of the following three results .

Theorem 2. 9:  Suppose Index T = k > 0. Then there is a left neighborhood

of p. such that for each K c J~ , g(X , - )  possesses at least k

distinct pairs of nontrivial critical points . These points converge to 0

as X~~~ p . .

Corollary 2.10: Suppose Index T~ = m > 0. Then there is a right neighbor-

hodd ..~ of p. such that for each K c .9 , g(K , j  possesses at least

m dist inct  pairs of nontrivial critical points. These points converge to
+o as K — p . .

Lemma 2.11: Index T 4- Index T~ > n.

—9-

- - - -~~~~~~- -.~- - 
— -.- . —

- -



•~

To establ ish Theorem 2 .9 , we require several fami l i es  of sets , F ,
which are constructed next . Suppose Index T = k .  For K C T we

defi ne ~ (K) (4’( t , x ) J ( t , x) ( -oo , O) x x ) , I .e .  we cone K over 0

using the flow 
~~~

. Now let 3 = {x ~ C(Q , 0) lx is odd, one to one ,

and K ( v )  = v i f v c T } . For I 
~ 

j ~ k , define

G~ = {~(~~(K)) I ~ 3, K C T , and Index K 
~ }

Observe that 9 ~ 3 and A c G, implies that 0(A) c G. . Finally

for 1 
~ 

j ~ k, define

{A\ V íA c G
q for some q, j <q < k , V ~, and Index V < q - j )

Lemma 2. 12: The sets possess the following properties:

1° F C F  1 < j < k - l .j + 1 j ’ — —
2~ If x 3 and B r ,, then X (B) c F , .

3° If B F and Z c e with Index Z ~ s < j ,  then B\ z x- .
Proç:~ 1

0 is obvious. To veri fy 20, let B c F, . Therefore B = A\ Y
with A c Gq~ Y C, and Index Y~~ q - j .  If x 3, then

~(A\Y ) = x( A\Y ) = ~(A) \~ (Y) . But 
~(A) E G q by an above remark ,

c 
~~~ , and Index x(Y) = Index V by 2 of Lemma 2 . 8 .  Hence

~(B) I.~~ Finally to pro ve 3°, let B A\Y as in 20. Therefore
B\Z = A\Y\Z = A\(Y U Z). Since A c Gq and Index (V U Z) < q - j + s
= q - (j  - s) by 3~ of Lemma 2.8, I t follows tha t B\Z c F

1
.

Proof of Theorem 2:~~~ Define

(2. 13) c = lnf max g(k , ci’), 1 ~ j ~ k
A c F  V I A

-10-



By 10 ol Lemma 2 .12 , c1 < C
2 

< c~~. We will further show :

( i )  c1 0; ( i i )  c. is a critical value of g(X , ~) with a corresponding

Inca! point in Q. (Since c1 > 0, this critical point is nontrivial) .

( i i i )  If c
÷1 

= c.~ d, (i.e. d is what we might call a

degenerate critical value of g(K , . )), then Index KXd > p. ( lv) As

-. 

~
,, ~~~~ crttical points corresponding to c., 1 < j < k , converge

~to v = 0. By I and 2 of Lemma 2.8, if Index A >  1, A contains

infinitely many distinct pairs of points. Hence Theorem 2.9  is a

consequence of (ii) - ( iv ) .

To prove (1), observe first from (2. 2) that

(2.14) g(x,v) = ~ 
~vJI

2 
+ ~ ((L - XI ) q~(X , v),~~(X , v)) + h(v + ~(X ,v))

where ( . , .) denotes the Inner produce in E , h ’ = H, and h( 0) = 0.

Since c(X,v) = o( lI v Il ) at v = 0 uniformly for K near p. and

h(u) = o( ilu 11 2) at u = 0, the dominating term in g for v near 0

is ii - K 
liv 11 2 . Therefore there is a p > 0, p depending on K , such

that for K < p and 0 < liv Ii ~

(2.15) g(K ,v)~~ 
p. X Hv 11 2

We can further assume B (0) fl aQ = ~~ Now choose any B c F
1. Then

B~~~~(~~(K)) \Y where K C T , I n d e x K = q > l , Y c C , and Index Y~~ q - l.

For T , depending on X and K, sufficiently large, x (4 , (-T , K)) C 8 (0) .

By 6° of Lemma 2 .8 ,

(2.16) Index x ( 4 ’( E - T, 01 x K)) fl ~B (0) = Index K = q

—Il—
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0 0Now 2 and 3 of Lemma 2. 8 together with (2.  16) show

(2.17)  Index B fl aB (0) = Index[ x(’I(K) ) fl a3 (0) 1\Y ~~

> Index ~(~‘(k) ) fl ~B (O) - Index Y> q - (q - 1) > 0

Therefore 1° of Lemma 2.8 and (2.17) yield that B fl aB (0) � ~~ . Hencep

(2. 18) max g(x , v) a mm g(X , v) a K

v c B  ll v i l = p

vla (2 . 15) .  Thus c1 > ~~(p . - X)p 2 > 0  by(2. 18) .

To prove (ii), suppose that c~ is not a critical value of g(x , ) .

Then by Lemma 2.7 wIth z = c
1 

and < z, there Is an e ‘ (0 ,~~1)

and a mapping 0( v) = l)(l, v) c C(Q, Q) such that 0 Is odd in v and

(2.19) ~~~~~~~~~~~~~~~~~~~

For K near ~i , g(K , .)  < 0 on T .  Hence by 20 and 3
0 of Lemma 2.7,

0(v) = v for v c T and 0 is 1 - 1 on Q.  There fore 0 c 3. Choose

B c  F~ so that

(2. 20) max g(K , v)~~~c1 
+ e

vc  B

By 2~ of Lemma 2 .12 , 0( B) c F .  Consequently

(2.  21) max g(X , v) a c
v 0( B)

But (2. 21) contradicts (2.19) — (2. 20) so c~ is a critical value of g(x , ) .

A similar argument establishes (iii).  Suppose Index 
~~ 

< ~~

By 4
0 of Lemma 2.8 , there is a 6 > 0 so that Index N o(K\d ) = Index KXd < p.

Invoking Lemma 2. 7 agaIn with z = d and 
~ 

< d , there exists an

e . (0 , £1) and an odd map 0(v) = ~(l , v) c C(Q, 0) such that 0 c 3 and

—12—
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2 . 22 )  0( A.x d+c \ N 6~~X , d~ 
C A

X , d—e

Choose B c F so that
J+p

(2. 23) max g(X, v) < d + £ = c 
+ 

+ ~
v c B

By 3
0 of Lemma 2 .12 , B\N o(K

\d
) c F. 1  and by 2

0 
of the same lemma ,

0(B\N 6 (K d)) ~ M ‘ F
1. Therefore

(2.24)  max g(X , v)~~ d = c.~ 1v cM

But ( 2 . 2 4 )  contradicts ( 2 . 2 2 )  — (2 . 2 3) .

Finally to prove (iv), observe that g(X , v) -. g(p., v) uniformly for

v c Q as K -. p.. Moreover •(T ) c F , for 1 < j 5 k and if v c

g(p . , v) < 0. Since 0 c

max g( p., v) = 0

vc~~( T )

Therefore as K — p . ,

0 < c , ( K ) < max g(K , v) -‘0
V .  ~ ( T )

Thus if v . ( K )  ts a critical point of g(K , ’ ) in Q with g( x , v~(x ) )  = c~(X )~
we can find a sequence K -. p. so that v~(x 5) -. v with g(p ., v) = 0

and 
~~~~~~ 

v) 0. &it 0 is the unique critical point of g(p ., ) in Q.

Hence as K -‘ p., v .(x )  — 0. The proof of Theorem 2. 9 is now complete .

Proof of Corollary 2.10: Replace g(X ,v) by -g(X ,v). The result is

then immediate from Theorem 2.9 .

—13—
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Proof of Lemma 2 .11:  The proof is based on that of Lemma 2 .7  of E S ] .

Let p ~ 0 with B (0) C V. B~i Lemma 2. 5 with V replaced by B (0),
p p

we can find a neighborhood 0b of 0 having the same properties as 0

wit h c replaced by b . If v 
~
0b 11 g(p ., - )1

(-b), there is a unique

-r (v) > 0 so that g ( p . , 4~( T ( v ) , v) )  -c. Moreover the map 0(v) = i4~( T ( v ) , v)

is odd and is in C(aQ b fl g(p ., ) 1(-b) , 80 fl g(p ., . )~
1
(-c)) with

0(S fl 
~
0b~ 

= T. Since Index T = k , by 2
0 

and 4
0 

of Lemma 2 .8 ,

there is a 6 > 0 so that Index (N 6
( T )  fl ~~Q) = k.  We claim for p

sufficientl y small , °~~
0b fl g~p, i’(-b)) C N6( T )  11 aQ. For otherwise

there exist sequences p -. 0, b -‘ 0, and x c B (0) such thatm m m p

g(p ., x )  = b > 0 and 4’(T (x ), x )  c eQ but xm p’ N 6(T ). Clearly

along a subsequence 4i(T(x ) , x )  -. ‘ eQ and y /  T .  But since

X -‘ 0, T (X
m

) -‘ ~~ Therefore y c T , a contradiction , and we can

find p as above.

0By 2 of Lemma 2.8 ,

(2 .  25) Index S fl 
~
0b = Index I = k <

Index( 3Qb 
(1 g(p ., ) 1(-b)) ~ Index N 6( T )  fl aQ = k

Hence all inequalities in (2.  25) are equalities. Similarly

(2 .26 )  Index(3Qb fl g(p,, ) 1
(b)) - m = Index T~

If v . aQ~\Q(~ , )~~(-b) , there is a unique t(v) 
~~. 

0 so that

g(p ., 4i(t(v), v)) = b. It follow s that ~(v) = 4~(t(v) , v) is a continuous

odd map of 8Q~\~ (~ , . )~~(-b) onto 8Qb fl 9~p., . ) 1(b) . Hence by 2~

of Lemma 2.8 again ,
‘C

— 14-
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( 2 . 2 7 )  Index( aQ~ \~ (~ , .) ’(_ b) 5

Index(aQb fl g(p. , .) 1(b)) m 5, 1ndex(aQ~ \g(~ , .) ‘( —b))

Thus we have equality In (2.  27).  Combining (2. 25), (2 .  27) and 3
0 and

• ~0 of Lemma 2.8 yields

— (2 .28)  n = Index aQ~~5 Index( aQ~ \g(~ , )~~(-b )) +

+ Index(8Qb I~ g(p ., i’(-b)) = m + k

and the proof of Lemma 2.11 is complete .

p

—15—
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§ 3. Definit ion and Properties of Index
4

The concepts of (Lj u sternik - Schnire lmann) category as well as that

of genus (called B-index by Yang [1o J and com dex by Conner-Floyd [ 7 J )

have played a useful role in problems involving the existence of critical

points . We develop here an alternative notion which is equivalent in

a restricted category to the index introduced by Yang [11], and which

has the properties usual ly enj oye d by these notions as well as one

~mportant additional one (Theorem 3.12 below) . These properties were

used in § 2 and summarized in Lemma 2. 8, with 60 corresponding to

Theorem 3.12 below .

We work with the category C of compact metric spaces which

admit  a free Z2 -actiori . More precisely, an obj ect of C is a pair (X , T)

where X is a compact metric space and T : X -. X is a fixed point

free homeomorphism of period 2. The morphisms of C are equivarient

maps.  i .e .  given (X , I) and (X ’ , T’) in (‘ a morphism f : (X , T) — (X ’ , T’)

is a (continuous) map f : X — X ’ such that (( Tx) = T’f(x) , for x c X.

Thus , compact symmetric subsets of a normed linear space are then

obj ects in (‘ and odd maps between such subsets are morphisms in (‘.

A fortiori , then the category e of symmetric subsets of some 1R’~\0

is included in (‘.

Given (X , T) c C , X = X/T is the corresponding orbit space and

the map q : X -. X which identifies x and Tx Is a 2-fold covering map.

— 16-



As usual , we wi l l  denote by S
00

, the direct l imi t  of the sequence

of sphere s of ascending dimension S1 C S2 
C S3 C ... , i . e. ,

00 k ‘x~ 00
S = t..~) S . S admits the antipodal action and P , the corre sponding

k = l

infinite dimensional proj ective space , is on one hand the orbit space —

and on the other , the direct l imit  of the proje ctive spaces

C P 2 C P 3 C . . . . It is easy to see that there exist equivariant maps

Nf : X — S ( in fact into S for N large) and any such map induces

a diagram
00x —,.s

where the vertical maps are the 2-fold covering maps and I is naturally

induced by 1. We call any such (f , f )  a classifying ~~~~ for (X , q, X ) .

Remark 3. 1: Both S~ and P
00 

receive the weak ( =  direct limit ,
00

= inductive) topology. For example, U C S is open if , and only if

u n is open in for all k = 1, 2 It then follows easily

that every compact subset of S
00

(P
00

) lies in some S~
(

(P k ) for k

sufficiently large.

Remark 3. 2: We employ Cech cohomology with Z2 coefficients and

the notation ~~ (X) stands for ~~~~~~~~ Z2). We also use the fact that

the cohomology of the real proj ective space ~n is the polynomial

ring over on one Indeterminate u c H l (P n ) ,  truncated by the relation

— 17—
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n+1 n n+lu = 0. Recall also that the inclusion map i : P — P indices

- . * q n+l q n
an isomorphism t : H (P ) — H (P ) for q ~ n.

We now give the definition of index which we will employ. Let

(X , T) denote an object of C, as above , and let (1, f) denote a

classifying map and N chosen so that f( X) C sN . Then set q’(f , I)

equal to the max k such that f *(u k ) * 0 where

— *  k Nf : H ( P  ) — H ( X )

is induced by f -. ~~~ Observe that q’(f , f) is inde pendent of N

and that Q(f , 1) ~ dim X.

P~op osj tion-Definition 3. 3: Set

Index X = ~(f , 1)

f or any classifying map (f, f ) ,  I or alternatively for any equivariant

map f : X — S
00

}. Then , index X is independent of the choice of (f , f ) .

Proof: In order to prove independence of (f , f )  let (g, ~~) denote

ano ther classifyin g map and choose N such that

x 1~~5~ x~i~sN

Li
We imbed X in the Hilbert cube QW

• If r~ : X -. Q” is such an

imbedding , then t, : X -, Q’
~
’ X Q’

~ defined by r~(x) = (x , Tx) is an

equlvar lant Imbedding using the action S(u , v) = (v , u) on Q~~ 
X Q~ )

•

Recall now that ~(X) in 0
” can be approximated by polyhedra in the

-18-



following sense : for every c 0 there is a set such

q(X) C m t  K C K C U C Q~~ 
where U is the c-neighborhood of X,

and K is homeomorphic to P X Q~~ where P~ is a finite ~-Ayhedron.

A simple modification of this yields the following

Lemma 3. 4: For e.very e ~ 0 there is an invari ant set K~ 
C Q~ x

(i. e. (u , v) c <= ‘> (v , u) £ 1(
c

) on which S acts freely such that

~,(X) C int K C K  C U  C Q W X Q W

where U is the c-nghd of ~(X) in 0” )< 0” and K~ is homeomorphic

to P x Q” where P is a finite polyhedron.

Now , using the above lemma we may identi fy X with ~(X) and

~) UT with S, so that X C Q x Q . We may extend the equivariant maps

f and g to a neighborhood V of X in 0” x C?” and hence to

equivar iant maps

N NF : K  — S  G : K  -‘S
£ £

where X C C V and K~ is homeomorphic to P
~ 

)( 0”, as in the

above lemma . Now, we may appeal to the fact that S
00 

-‘ P~ is a

universal principal Z2-bundle to prove that F — G : -. P
00

. Alterna-

tively , working separately on the components of K~, one shows that

= : it 1( K )  — w
1
(P

00
) ,

where F # and are the homomorphisms induced by F and G, and

then this forces F~~ G since i s a  K(Z 2, l) (see [12], pg. 427) .

Hence , f or a large positive Integer M we have

¾
-19- t
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— — — M
f — g : X — P

_*  .‘..* * M * —  — —and hence I = g : H (P ) -‘ H (X) and thus q’( f , f) ç~(g ,g ) .

R~jpark 3. 5: We adopt the convention that the index of the null set is -1

and if X is a non-empty set in C with f (u) = 0 above , then index

— * k ~~ I
X = 0. Also , notice that I (u ) = 0 implies f (u ) = 0 for 1 > k .

We might also note here that a more inclusive notation would be

index (X , T) rather than index X, since T plays a vital role . However,

T is not usually displaye d, by convention .

We now investigate the basic properties of this index.

Proposition 3.6 : index X ( dim X.

Pr~pf: This is immediate because ~~~~~~~ = 0 for q > dim X, where

dim X re fers to the covering dimension of X [13] .

Fgppositipn 3.7:  If g : X -‘ Y is equivariant , i.e. if g is a morphism

of the category C , then index X ~ Index Y.

ProoJ: Let (f , f) denote a classifying map for Y. Then, we have the

diagram

x~.2+y_ !+s°°

1oo
x —9-II. Y —‘P

where (h fg, ~ = i~~) Is a classifying map for X. If index Y =

then for j > k
—* j _*Iv*h (u ) = g f (u ) = 0

and hence index X < k = index Y.

—20-

—

~

---- . .- —~



Corollary 3. 8: If X C Y, then index X 5, index Y.

Proposition j~I: Let K~ ~~ 
. . .  3 K 3 K~~ 1 3 . . .  denote a

descending sequence of compacta in C with X = fl K and all receivingp 
—

5

their  f ree ~ 2 -action by restricting that of Then , for some p0,

index K = index X , p ~ p0 .

Proof: We know that index X ~ index K for every p, since X C

Therefore, it suffices to show that for some p0, index K 5, index X

N 00
for p >  p0 . Given an equivariant map f : X -.5 C S , we may extend

I to a neighborhood (in of X and hence we may assum e without

loss that f extends to F : K -‘ C S
00

. Let F = F I K  and consider1 p p

the diagram

— i 
— 

F N

p+l

where I : X C K and J : K C K are inclusion maps . Then,p p p+1 p+1 p

we have an induced diagram

~~ (X) ~~~~ lim fl~ (~ ) ~~ j~~(p N )
—0 p

where a = lim i * is an isomorphism using the continuity property of

Gech theory , p = F and a . = I : H (P ) -. H (X) . Suppose

now that index X = k . Then, since f *( k+l ) = 0 and a is an

— * k+ 1isomorph ism it follows that F (u ) = 0 for some p0 and hence forp0

— 2 1—
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every p p0 . Thus, index K 5, k for all p ~ p0 and the result follows.

Cprollary 3.10: If X ~ is a subset of lR n \ {O}, there is a symmetric

polyhedron K in IR~’\0 such that X C interior K and index X = index K.

K may be chosen with in any neighborhood of X and in fact K may

be ~~ s’~n as a smooth n -man ifold with boundary.

Proof: Given a neighborhood W of X choose a sufficiently fine

smooth triangul ation of lRn \ {O} and let K denote a regular neighborhood

of an appropriate subpolyhedron containing X.

Corollary 3.11: If (X , T) E C, then X may be equivariantly imbedded

U U U Uin Q x Q using the flip action S(u , v) = (v , u) on C? x Q . Identify-

ing X with its image in Q~ * Q
” and T with S, there is a compact

invariant set K C X Q
” such that X C tnt K, index X = index K and

K is homeomorphi c to P x Q” where ~ is a finite polyhedron . K may

be chosen within any neighborhood of X.

Proof: Apply Lemma 3. 4.

Fro~ ositton 3.12: Suppose X = A U B, with A, B, and X In ‘ and

where A and B receive their free Z2-actions from X. Then,

index X < inc~ x A + index B + 1

Prooj : We will make use of the cup product in Cech theory over

(see [ 14J , p. 288)

H~(X, A) 
~~~~~~

, ~~~~~~~ B) -. H~~~ (X, A U B) .

-22—



F

~~ 55

Suppose index A = p, index B = q and index X = k. Let (f , f )  be a
p -

classifying map for X, with (f1, f~) and (f~, ~~ 
serving as classifying

maps for A and B, respectively, where I1 = f IA and f 2 = f i B .

Then , for N sufficiently larg e , we have the diagram

m N11 (P ) —

m — *  m-11 (B) f 11 (A )

and exact sequences for pairs

_
~~~~ H’~(X , ~~) ~~~~~ Hm (X) ~~~~~~~ Htm (A) —L Hm+l (X ~~)

- ~ H
m (X , B) ~ Htm (X) ~~~~~~~ Htm(B) .. !~~ . Hm+l (X B) a : . .

Since

0 = 7~(u~~ ’) = i*( 1~~ l
)

0 = f ( u ~~’~ ) 
.w*

f *( q+l )

+1 — —  + 1 — —we have x ~ H (X, A), y ~ H (X, B) such that

a *(x) = ?*(u P4~) ~*(y ) = 7*( q+l )

Now, using the naturality of the cup product;

A) ~ H~~
1(X, B) ‘P H~~~~

2(X, A U B)• +1_ I +~~
_ 

_ _ _ _ _

• H~ (X) 0 ~~ (X) ‘P ~~~~ (X)

— 2 3 —

— 
~~~~~~~~~~ ~~~~~~~~~~~
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w~~ see that x U y 0 implies

o 1*(u P+l ) U f ( q÷ l ) ( p+q+2
)

Therefore , k 5, p + q + I and the proof is complete .

Pro position 3 .13:  If U is a bounded symmetric open set in

containing the origin with boundary B = aU , then

index B = n

Proo f: One considers , as usual , the odd map f : B —‘ S~ which takes

x to x/ lix II .  This map induces an inj ection

—* q nf : H ( P ) - - H (B) , q < n .

The proof that f is an inje ction is more or les ; classical and may be

effected by using the transfer map (see Dold [14 , p. 309]) as follows.

First , we may assume that f is extended to an odd map f : mn+I

such that f l(5n ) = B. If we let ~~~~ denote ~ n+1 \(0 } with antipodes

Identified then f induces f :  NT~~ -‘ N~~ ’ with f l (~ n) = 
•
~ and

= o where o_ E H (N ~~
l Nn÷l \B )  °~ n H ÷1(N l , Nfl+l \P i1)

are fundamental classes over Z2
. Then , according to [14],  there is a

transfer map (over Z2 )

1! : 11~~(~~) -. 11
q

(~ n )

* q n q
which acts as a right inverse for f : H (P ) —‘ H (B) . Thus , f is an

injection and this forces index B ~~ . n. Finally, since index B 5, dim B

we have the desired result.

We now proceed to verify an important additional geometric property

of h riex as defined above and which corresponds to of Lemma 2.8.

— 24—



Theorem 3. 14: Assume the following :

( i )  M n i  is a compact connected symmetric manifold in lR’~’\ {0}

separating IR’~ into components U and V.

(ii) A is a symmetric compact subset of U.

- n
( i i i)  q’ : A x  [0 , i- -. ]R \ {0) is a symmetric imbedding

l c (-x , t)  = -c(x , t)) such that c(a , 0) a , a € A and q’(A X T )  C V.

Then , if we set C M~
’1 fl ct’( A x [o , T ])~ we have index C = index A.

The proof of this theorem will make use of the following result.

Proposition 3.15: Suppose Mn is a manifold and X C  Mn is a compact

subset of Nn separating Mn , say = ulv , so that U fl V z

Let A denote a compact space , I = [0 , 1], and c : A X I — Mn an

Imbedding such that q’(A x {o}) C U and c(A X {i}) C V. If we set

C c(A X I) fl X, g = proj1 . ç 1 : ç(A X I) — A ,

and g
0 

gj c , then

Mn(A) — Mn(C)

is injective (one to one) for all q > 0 (any coefficients).

Proof: There is no loss in identifying A and ç(A X {o))  and also

assuming that c(a , 0) = a , a A. We introduce the notation :

B = ~(A x 1)

A’ = U fl q’(A x I)

B’ = V f l  ~‘(A x I)

• and notice that

A’ U B’ = c.(A X I), A’ fl B’ = C .

— 25—
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Fur thermore, the inclusion maps

A— ~.-ø~A’ U B’, B — ~.÷A’ U B’

are homotopy equivalences and g0 serves as a homotopy inverse

for a. We also introduce the inclusion maps ,

i 1 :A’ - A ’ U B’ , i 2 :B ’ - A ’ U B’

A’ (1 B’ — A , j~ : A’ fl B’ — B ’

k 1 : A —A ’ , k 2 : B —B’

Then , i1 
. k1 = a and 1

~ 
k
2 

= ~ implies the induced maps i~

and i on cohomology are both injections . Consider now the Mayer-

Vietori s sequence for A’ U B’ ,

—~~~ 11~~(~~~S U ~ l)_L ~~~~(~~,) ~ ~~~~~~~~~~~~~~~~~ fl B’)—*

where T, = (i~
’, -i) and 1 = + j .  This forces j~ : 11~~(~~~) -.H’~(A ’ fl B ’)

to be an injection as follows. Su ppose j~ (a ’) 0. Then , for some

y t 11~~(~~5 U B’) we have

~(y ) = (a ’,O) = (i~ (y), -i;(y))

and hence i (y) 0. This force s y = 0 and hence a ’ = 0. Now ,

consider the retraction g1 
= gi 1 of A’ to A. Since g1k1 = idA, g~

is an injection and hence the diagram

11~~~
(
~~~~S )  ~~~~~~~ fl B’)

H (A)

-26-
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*shows that g
0 

is art injection .

n nProof of Theore m 3.14: Let N denote IR \ {o} with antipodal points

identified and apply Proposition 3.15 in N’~ with X = Mn i  as follows .

• Set

—l
g=pro j

1
.~~ :c(A x I )—A

— 
C = Mn l  fl q’(A x I)

Let A, C, g denote the corresponding obj ects in Nn arid by Proposition 3.15

Mn(C) —

is injective . Take a classifying map (f , f )  for A and we obtain a

diagram

• g0 I NC —oA—- . S

_ _C ) A — ’ P

— *  k — *- ~* kand f (u ) � 0 If , and only if , g0 I (u ) � 0 and the theorem follows.

Remark 3.16: Proposition 3.15 may also be employed to give an alternative

proof of Proposition 3.13.

We indicated at the beginning of this section that this notion of

index is equivalent in a restricted category to that Introduced by Yang in [U I.

We develop this further now .

Let ~ denote the category whose objects are pairs (X , T) with

X a compact Hans dorff space and T a fixed point free Involution on X,

—27 -
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in~ whose morph i sms are equ iva ri an t  maps .  The following definit ion

i s an equivalent formulation of Yang’s index (see [11J, § 3 .6 ) .

DefInition 3. L7: Given (X , T) ~~, the Yang Index of (X , T), denoted

by Yang Index X, is the largest integer n such that for any equivariant

map I : X . Y, with (Y , S) ~ ‘~ arbitrary,

I : H ( X ) - ’ H ( Y )
* n n

is non-tri vial , using Cech homology with Z2 -coefficients , where X

and Y are the orbit spaces X/T, Y/S, respectively.

Proposition 3JJ: For (X , T) t C

Yang index X = index X

Proof: The proof will make use of duality in Cech theory ([13] ,  [15])  which

takes the following form . On the category of compact spaces X, there

are natural tran sformations q’ and ~

11~~(~~) —f-.. [ 11~(x) J
~ ~ Hq(X)

which are isomorphisms for each X, where [ Mn(X) I 
* is the dual over

of ~~~~~~~~ We also make use of the fact that if (Y , T) ~~
‘
, there

is a finite complex K which admits a free Z2 -action and an equivariant

map h : Y - K. K is , in fact , the nerve of an appropriate finite cover

of Y and h a barycentri c mapping (see [ l l j ) .

Now , suppose (X , T) ~ C and (Y , 5) t ~‘ and let f : X — Y be an

equivarlant map . Then we have a diagram

-28--
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~~~x) c~~~~( ) J * 
~ p.H (X)

• f *1 (f *) *j  ~L f
*

~~~~~~~ ~~~~~~~~~~~~~~~ 4~ 
~Hq

(Y)

if 1,,, s 0 for every Y, then this is so far Y = and f *(~~ ) � 0

for y P
1g

. Thus , index X >  Yang index X. On the other hand , to show

index X 5, Yang index X, suppose Y Is chosen so that = 0. FIrst

choose K as above and an equivariant map g : Y — K and then an

equivariant map h : K — for N suf f ic ien t ly  large. Now ,

(h g 
~~ 

h~ g~ f~ = 0 and hence (h g I) = 0 , where

* q N q( h g f )  : H ( P  ) — H ( X ) .

This shows , index X 5, Yang index X and the proof is complete .

Let us recall the notion of genus which may be derived from Yang ’s

notion of B-index (or the notion of com dex of Conner-Floyd). Given

(X , T) t 
~~
‘
, B-index X is the minimum k such that X admits an equlvarian t

map f : x -. Then , we have , for (X , T) ~

Yang index X = index X < B-index X -

Furthermore, for any symmetric compact subset X in a linear space,

we have (directly from definitions)

genus X = B-index X + I

It is , therefore , convenient to increase the index by 1 and define the

notion of Index X as follows.

• DefinItion 3. 19: For (X , T) ~ C, set

Index X = index X + 1

_ 
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Remark 3 .20:  Clearl y then

Index X < genus X

and we note tha t in [10) Yang has an example of a symmetric imbedding

of a polyhedron K in IR4 such that

Yang index K 1 , B-index K = 2

Since Yang index K = index K (by Theorem 3.17) we see that

Index K < genus K

so that the Index we have introduced may be strictly less than genus.

Finally one can translate the above relationships to those between

Ljsternik-Schnj re~~~~ category and Index using the equivalence between

genus and category in the appropriate setting (see [ 9 J ) .

Lemma 2. 8 was stated in term s of “Index ”. Basically the proposi-

tions we proved for “index ” remain valid for “Index ” with minor arithmetic

changes. For example ,

(3 . 5)’ X � ~ implies Index X ~ 1 and Index (~~) = 0.

(3 .6 ) ’  I n d e x X < d i m X + 1

(3.12) ’  Index (A U B) < Index A + Index B

(3.13) ’ Index B = n + 1, where B is the boundary of a symmetri c

bounded open neighborhood of 0 In 1R~~’, e.g. Index ? = ri + 1, n >  0.

Thus, the material in thi s section constitutes a prc~ot of Lemma 2 .8 .

c
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